4,024 research outputs found

    Automatic Detection of Laryngeal Pathology on Sustained Vowels Using Short-Term Cepstral Parameters: Analysis of Performance and Theoretical Justification

    Get PDF
    The majority of speech signal analysis procedures for automatic detection of laryngeal pathologies mainly rely on parameters extracted from time domain processing. Moreover, calculation of these parameters often requires prior pitch period estimation; therefore, their validity heavily depends on the robustness of pitch detection. Within this paper, an alternative approach based on cepstral- domain processing is presented which has the advantage of not requiring pitch estimation, thus providing a gain in both simplicity and robustness. While the proposed scheme is similar to solutions based on Mel-frequency cepstral parameters, already present in literature, it has an easier physical interpretation while achieving similar performance standards

    Sampling bias in systems with structural heterogeneity and limited internal diffusion

    Full text link
    Complex systems research is becomingly increasingly data-driven, particularly in the social and biological domains. Many of the systems from which sample data are collected feature structural heterogeneity at the mesoscopic scale (i.e. communities) and limited inter-community diffusion. Here we show that the interplay between these two features can yield a significant bias in the global characteristics inferred from the data. We present a general framework to quantify this bias, and derive an explicit corrective factor for a wide class of systems. Applying our analysis to a recent high-profile survey of conflict mortality in Iraq suggests a significant overestimate of deaths

    Dynamic heat and mass transfer model of an electric oven for energy analysis

    Get PDF
    In this paper, a new heat and mass transfer model for an electric oven and the load placed inside is presented. The developed model is based on a linear lumped parameter structure that differentiates the main components of the appliance and the load, therefore reproducing the thermal dynamics of several elements of the system including the heaters or the interior of the product. Besides, an expression to estimate the water evaporation rate of the thermal load has been developed and integrated in the model so that heat and mass transfer phenomena are made interdependent. Simulations and experiments have been carried out for different cooking methods, and the subsequent energy results, including energy and power time-dependent distributions, are presented. The very low computational needs of the model make it ideal for optimization processes involving a high number of simulations. This feature, together with the energy information also provided by the model, will permit the design of new ovens and control algorithms that may outperform the present ones in terms of energy efficiency

    Inverse modeling of pan heating in domestic cookers

    Get PDF
    The heating uniformity of the cooking vessels in domestic stoves depends on the type of heat source (induction, electric resistance, gas burner, etc.) and of the way in which the power is transferred to the pan. The evaluation of the stove functionalities is currently carried out by the manufacturers with costly experimental tests with real food, which are an important phase of the design process for the improvement of their performance in the food elaboration. In order to help to design the cookers and avoid the expensive tests, it is interesting to know how the heating power is distributed in each situation, so that the cookers can be adapted to obtain a more uniform heating. The contribution of this work is an inverse thermal model for the three aforementioned technologies of domestic cookers, which allows the calculation of the power distribution generated in the bottom of the pan from the measurement of the surface temperature. The results show that the proposed inverse model is of interest in many practical situations and can be used under diverse conditions

    Human-computer interaction based on hand gestures using RGB-D sensors

    Get PDF
    In this paper we present a new method for hand gesture recognition based on an RGB-D sensor. The proposed approach takes advantage of depth information to cope with the most common problems of traditional video-based hand segmentation methods: cluttered backgrounds and occlusions. The algorithm also uses colour and semantic information to accurately identify any number of hands present in the image. Ten different static hand gestures are recognised, including all different combinations of spread fingers. Additionally, movements of an open hand are followed and 6 dynamic gestures are identified. The main advantage of our approach is the freedom of the user’s hands to be at any position of the image without the need of wearing any specific clothing or additional devices. Besides, the whole method can be executed without any initial training or calibration. Experiments carried out with different users and in different environments prove the accuracy and robustness of the method which, additionally, can be run in real-time

    Hierarchical Triggering of Star Formation by Superbubbles in W3/W4

    Full text link
    It is generally believed that expanding superbubbles and mechanical feedback from massive stars trigger star formation, because there are numerous examples of superbubbles showing secondary star formation at their edges. However, while these systems show an age sequence, they do not provide strong evidence of a causal relationship. The W3/W4 Galactic star-forming complex suggests a three-generation hierarchy: the supergiant shell structures correspond to the oldest generation; these triggered the formation of IC 1795 in W3, the progenitor of a molecular superbubble; which in turn triggered the current star-forming episodes in the embedded regions W3-North, W3-Main, and W3-OH. We present UBV photometry and spectroscopic classifications for IC 1795, which show an age of 3 - 5 Myr. This age is intermediate between the reported 6 - 20 Myr age of the supergiant shell system, and the extremely young ages (10^4 - 10^5 yr) for the embedded knots of ultracompact HII regions, W3-North, W3-Main, and W3-OH. Thus, an age sequence is indeed confirmed for the entire W3/W4 hierarchical system. This therefore provides some of the first convincing evidence that superbubble action and mechanical feedback are indeed a triggering mechanism for star formation.Comment: 10 pages, 6 figures; accepted to the Astronomical Journal. Figure 2 included in this submission as JPE

    Cooperative Periodic Coverage With Collision Avoidance

    Get PDF
    In this paper, we propose a periodic solution to the problem of persistently covering a finite set of interest points with a group of autonomous mobile agents. These agents visit periodically the points and spend some time carrying out the coverage task, which we call coverage time. Since this periodic persistent coverage problem is NP-hard, we split it into three subproblems to counteract its complexity. In the first place, we plan individual closed paths for the agents to cover all the points. Second, we formulate a quadratically constrained linear program to find the optimal coverage times and actions that satisfy the coverage objective. Finally, we join together the individual plans of the agents in a periodic team plan by obtaining a schedule that guarantees collision avoidance. To this end, we solve a mixed-integer linear program that minimizes the time in which two or more agents move at the same time. Eventually, we apply the proposed solution to an induction hob with mobile inductors for a domestic heating application and show its performance with experiments on a real prototype. IEE

    Capacity Leasing in Cloud Systems using the OpenNebula Engine

    Get PDF
    Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEUnión Europea. FP7Ministerio de Educación y Ciencia (MEC)Comunidad de Madridsubmitte

    A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem

    Get PDF
    The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.Facultad de Informátic

    Introducing a new dosimeter for the assessment and monitoring of vocal risk situations and voice disorders

    Get PDF
    Summary: Purpose. There are many physiological parameters recorded by devices that are becoming more affordable, precise and accurate. However, the lack of development in the recording of voice parameters from the physiological or medical point of view is striking, given that it is a fundamental tool for the work of many people and given the high incidence and prevalence of voice pathologies that affect people’s communication. In this paper we perform a complete literature review on the dosimeters used in voice research and to present a pro- totype dosimeter with a pilot study to show its capabilities. Method. We conducted a literature review using the keywords [MONITORING], [PHONATION], [ACCU- MULATOR], [PORTABLE], [DOSIMETRY], [VOICE] searching in PubMed, Trip Database, HONcode, and SciELO search engines. From our review of dosimeter designs, we created our own prototype consisting of two main components: a Knowles Electronics BU-7135-0000 accelerometer mounted on a neck brace; and the ultra- low power MSP430FR5994 microcontroller. The selected sampling frequency was 2048 Hz. The device calculates the F0 every 250 ms and the amplitude and phonation activity every 31.25 ms. A pilot study was conducted using 2 subjects: one male during 11 days and one female during 14 days. Results. This work includes devices that have been created during the last 45 years as tools for the diagnosis and monitoring of the treatment of cases of vocal pathology and for the detection of phonatory patterns or risk situa- tions for developing voice disorders or vocal pathologies. We also present recordings with our new device on the pattern of daily talk time, the fundamental frequency and the relative intensity of two subjects on different days. Conclusions. Interesting work has been done in the development of voice dosimeters with different approaches. In our experience it is not possible to access them for research and they are not yet in clinical use. It is possible that a joint approach with voice and voice disorders professionals and engineers working closely together could take advantage of current technology to develop a fully portable, useful, and efficient system
    corecore